Search results for " 65C05"

showing 7 items of 7 documents

Simulation of BSDEs with jumps by Wiener Chaos Expansion

2016

International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.

Statistics and ProbabilityWiener Chaos expansionDiscretizationMonte Carlo methodTime stepConditional expectation01 natural sciences010104 statistics & probabilitybackward stochastic differential equations with jumpsFOS: MathematicsApplied mathematics60H10 60J75 60H35 65C05 65G99 60H070101 mathematicsMathematicsPolynomial chaosApplied MathematicsNumerical analysis010102 general mathematicsMathematical analysista111Probability (math.PR)numerical methodCHAOS (operating system)[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationScheme (mathematics)Mathematics - Probability
researchProduct

On resampling schemes for particle filters with weakly informative observations

2022

We consider particle filters with weakly informative observations (or `potentials') relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman--Kac path integral models -- a scenario that naturally arises when addressing filtering and smoothing problems in continuous time -- but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time l…

FOS: Computer and information sciencesHidden Markov modelparticle filterStatistics and ProbabilityProbability (math.PR)Markovin ketjutStatistics - ComputationMethodology (stat.ME)resamplingFOS: Mathematicsotantanumeerinen analyysiPrimary 65C35 secondary 65C05 65C60 60J25Statistics Probability and UncertaintyFeynman–Kac modeltilastolliset mallitComputation (stat.CO)path integralMathematics - ProbabilityStatistics - Methodologystokastiset prosessit
researchProduct

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance

2017

We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…

Statistics and ProbabilityFOS: Computer and information sciencesdelayed-acceptanceMarkovin ketjut01 natural sciencesStatistics - Computationasymptotic variance010104 statistics & probabilitysymbols.namesake60J22 65C05unbiased estimatorFOS: MathematicsApplied mathematics0101 mathematicsComputation (stat.CO)stokastiset prosessitestimointiMathematicsnumeeriset menetelmätpseudo-marginal algorithmApplied Mathematics010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte CarloCovarianceInfimum and supremumWeightingMarkov chain Monte CarloMonte Carlo -menetelmätDelta methodimportance samplingModeling and SimulationBounded functionsymbolsImportance samplingMathematics - Probability
researchProduct

Exact simulation of diffusion first exit times: algorithm acceleration

2020

In order to describe or estimate different quantities related to a specific random variable, it is of prime interest to numerically generate such a variate. In specific situations, the exact generation of random variables might be either momentarily unavailable or too expensive in terms of computation time. It therefore needs to be replaced by an approximation procedure. As was previously the case, the ambitious exact simulation of exit times for diffusion processes was unreachable though it concerns many applications in different fields like mathematical finance, neuroscience or reliability. The usual way to describe exit times was to use discretization schemes, that are of course approxim…

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Probability (math.PR)primary 65C05 secondary:60G40 68W20 68T05 65C20 91A60 60J60diffusion processes[MATH] Mathematics [math]Exit timeExit time Brownian motion diffusion processes rejection sampling exact simulation multi-armed bandit randomized algorithm.randomized algorithm[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]exact simulationFOS: MathematicsBrownian motionmulti-armed banditMathematics - ProbabilityRejection sampling
researchProduct

Exact simulation of first exit times for one-dimensional diffusion processes

2019

International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …

Girsanov theoremand phrases: Exit timeDiscretizationsecondary: 65N75Exit time Brownian motion diffusion processes Girsanov’s transformation rejection sampling exact simulation randomized algorithm conditioned Brownian motion.MSC 65C05 65N75 60G40Exit time01 natural sciencesGirsanov’s transformationrandomized algorithm010104 statistics & probabilityrejection samplingGirsanov's transformationexact simulationFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsConvergent seriesBrownian motion60G40MathematicsNumerical AnalysisApplied MathematicsMathematical financeRejection samplingProbability (math.PR)diffusion processesNumerical Analysis (math.NA)conditioned Brownian motionRandomized algorithm010101 applied mathematics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Computational MathematicsModeling and Simulationconditioned Brownian motion 2010 AMS subject classifications: primary 65C05Brownian motionRandom variableMathematics - ProbabilityAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers

2018

We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…

Statistics and ProbabilityMetropoliswithin-Gibbsgeometric ergodicity01 natural sciencesCombinatorics010104 statistics & probabilitysymbols.namesakeFOS: MathematicsMetropolis-within-GibbsApplied mathematicsErgodic theory0101 mathematicsGibbs measureQAMathematics65C40 (Primary) 60J05 65C05 (Secondary)Particle GibbsMarkov chainGeometric ergodicity010102 general mathematicsErgodicityuniform ergodicityProbability (math.PR)iterated conditional sequential Monte CarloMarkov chain Monte CarloIterated conditional sequential Monte CarloRate of convergencesymbolsUniform ergodicityparticle GibbsParticle filterMathematics - ProbabilityGibbs sampling
researchProduct